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Abstract: Reaction of the dimeric Ni(l) chloride complex [(dtbpe)-
NiCl], (1) with dimesitylsilyl potassium affords the three-coordinate
Ni(l) silyl complex (dtbpe)Ni(SiHMes,) (2). Alternatively, 2 can be
prepared by an oxidative-addition reaction of Mes,Si(H)OTf (Tf
= CF3S03) with the nickel(0) complex [(dtbpe)Ni](«-CeHe) (3),
with (dtbpe)Ni(OTf) (4) formed as an easily separable byproduct.
The one-electron oxidation of 2 by ferrocenium affords diamag-
netic [(dtbpe)Ni(u-H)SiMes,][BArF,] (5), a Ni(ll) complex formed
by partial 1,2-H migration from silicon to nickel and featuring an
unusual 3-center, 2-electron bonding motif between Ni, Si, and
the bridging H. Complex 5 was also obtained from Mes,SiH,
activation by the neopentyl complex salt [(dtbpe)Ni(CH,CMe3)]-
[BArF,] (6) with elimination of neopentane.

Silylene complexes® have received considerable attention because
of their participation in various transformations of organosilicon
compounds, such as dehydrogenative coupling of hydrosilanes,?
redistribution of substituents on silicon atoms,® Rochow’s direct
process,* and silylene transfer to unsaturated organic compounds.®
Several synthetic strategies have been employed in the formation of
silylene complexes, relying on abstraction of triflate® or chloride” from
silicon to produce cationic complexes, coordination of photochemically
generated silylenes,? and, most interestingly, 1,2-hydrogen migrations.®
Intramolecular hydrogen migration from silicon to a late-transition
metal is significant in understanding the rearrangements taking place
in metal silyl complexes involved in catalysis,"™***** but only one
discrete example has been reported for a group 10 metal, [(1,2-
iProPCH,CH,P'Pr,)Pt(H)(SiMes,)][MeB(CsFs)s].*?* DFT studies on a
simplified model were inconclusive on whether hydrogen bridges Pt
and Si or is present as a standard Pt hydride.**® Herein we describe
an analogous, structurally characterized Ni complex in which the
H atom unambiguously bridges the metal and silicon. This report offers
insight into processes taking place during Si—H activation at metals and
characterizes the bonding motif in this nonclassical nickel-silyl cation.
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Figure 1. A perspective view of complex 2 (35% probability ellipsoids; H
atoms except on Si omitted for clarity). Selected metrical parameters (distance,
A; angle, deg): Ni—Si = 2.3731(10), Ni—P(1) = 2.2502(10), Ni—P(2) =
2.2507(9), Si—H = 1.53(3); P(1)—Ni—P(2) = 90.60(3), P(1)—Ni—Si =
126.68(4), P(2)—Ni—Si = 138.75(4), Ni—Si—H = 110.0(12), Ni—Si—C(71)
= 124.35(12), Ni—Si—C(81) = 112.88(11), C(71)—Si—C(81) = 104.65(15).

A Ni(l) silyl complex, in which one of the silyl substituents is
hydrogen, was targeted as a precursor to a possible nickel-silylene
fragment. The reaction between [(dtbpe)Ni(«-Cl)], (1, dtbpe = 1,2-
Bu,PCH,CH,PBU,)*® and Mes,SiHK (Mes = 2,4,6-Me;CsH,) al-
lowed for the isolation of (dtbpe)Ni(SiHMes,) (2) as green dichroic
crystals in 86% yield (Scheme 1). This method was higher yielding
and had better reproducibility than the oxidative addition of
Mes,Si(H)OTf (Tf = CF3;S0Os) to a nickel(0) complex, [(dtbpe)Ni](u-
CsHe) (3, Scheme 1).2* Although other silanes give arrested oxidative
addition of the Si—H bond to the Ni(0) center,*® two products were
formed in the reaction of 3 with Mes,Si(H)OT#: (dtbpe)Ni(OTf) (4)*°
and 2.
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Figure 2. A perspective view of the complex cation of 5 (35% probability
ellipsoids; H atoms except on Si omitted for clarity). Select metrical data
(distance, A; angle, deg): Ni—Si = 2.147(2), Ni—H = 1.70(7), Ni—P(1) =
2.189(2), Ni—P(2) = 2.254(2), Si—H = 1.64(7); P(1)—Ni—P(2) = 92.56(6),
P(1)—Ni—=Si = 115.17(7), P(2)—Ni—H = 103(2), Si—Ni—H = 49(2),
Ni—Si—C(31) = 121.2(2), Ni—Si—C(41) = 124.5(2), C(31)—Si—C(41) =
114.3(3).

Complex 2 represents the first example of a three-coordinate Ni(l)
silyl complex. The solid-state structure of 2 (Figure 1) features a
trigonal-planar nickel center and tetrahedral silicon. The Ni—Si
distance of 2.3731(10) A is slightly longer than other reported
Ni—Si bonds (2.21—2.30 A),*>¢ presumably due to sterics. The
hydrogen connected to the silicon atom was located in the electron-
density map at 1.50 A from Si and refined isotropically. The
assignment of a nickel(l) center is supported by the effective
magnetic moment of 2.1 ug, determined in solution (22 °C, C¢Ds),
corresponding to one unpaired electron and consistent with a d°
electronic configuration.

A cyclic voltammogram of 2 shows a quasi-reversible wave for
the Ni(1)/Ni(11) couple at E;, = —0.48 V (THF; vs Cp,Fe/Cp,Fe™).
Oxidation of 2 with [Cp,Fe][B(Arf)s] (Scheme 1, Arf = 3,5-
(CF3),CsH3) allowed for the isolation of diamagnetic [(dtbpe)Ni(u-
H)SiMes,][BArF,] (5) in 85% yield. X-ray crystallography (Figure
2) reveals that a hydrogen atom is located in the P,NiSi plane of 5,
bridging nickel and silicon (Ni—H = 1.70(7) A, Si—H = 1.64(7)
A) and resulting in distorted square-planar coordination geometry
at nickel. The Ni—Si distance (2.147(2) A) is 9% shorter than the
corresponding distance in 2 and is close in value to that reported
for Ni silylene complexes (~2.14 A).*%4 The {C(31), C(41), Si}
plane is perpendicular to the {P(1), P(2), Ni} plane (£87.75°). There
are similarities in the structures of Ni(0) boryl complexes'’® and a
Mo hydrosilylene complex*™ and 2.

In agreement with its solid-state structure, features of the u-H
resonance in the *H NMR spectrum of 5 are indicative of hydridic
character. It appears at 6 —8.64 (dd, J4p = 4.8, 47.1 Hz) with a
Jup smaller than those found in other d® square-planar nickel
hydrides.*® In addition, the Jus; at 43.4 Hz is smaller than those in
conventional hydrosilyls and hydrosilanes (~60—150 Hz).*® The
29Si{*H} NMR spectrum shows a resonance at 6 292 (dd, Jpsi =
12, 146 Hz). Attempts to deprotonate 5 to give a silylene complex
((dtbpe)Ni=SiMes,) were unsuccessful, perhaps also reflective of
its hydridic character.

Reaction of Mes,SiH, with the neopentyl complex salt
[(dtbpe)Ni(CH,CMe3)][BArF,] (6; Scheme 1)*3¢ also affords 5,
indicating the structural motif found in 5 is not a consequence of
peculiar reaction conditions in its synthesis. This likely proceeds
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Figure 3. Frontier molecular 7--symmetry orbitals for a hypothetical nickel
silylene (dmpe)Ni=SiPh, (left) and for the three-center bond of (dmpe)Ni(u-
H)SiPh,* (right).

by silane coordination to the electrophilic Ni center,*® replacing a
weak C—H agostic interaction,**® to give an intermediate that
undergoes intramolecular H-abstraction with neopentane elimination
to generate 5. This metathesis route is attractive as it uses a
secondary silane that is more accessible than Mes,SiHK and would
appear to be the more general synthetic approach.

DFT calculations (B3LYP, LANL2DZ basis sets)* were carried out
using a (dmpe)Ni(u-H)(SiPh,)* model (dmpe = Me,PCH,CH,PMe,) to
understand the unusual Ni—H—Si bonding motif in 5 relative to
the hypothetical parent silylene (dmpe)Ni(SiPh,) (Figure 3). The
calculations indicate that the bridging hydrogen participates in a
3-center, 2e~ bond using the 1s H orbital and the s orbital of the
Ni=Si core to effectively give a “protonated” Ni=Si double bond,
and an NBO analysis is consistent with this picture. Optimized
metrical parameters for the (dmpe)Ni(u-H)(SiPh,)™ model (e.g.,
Ni—H =1.731 A, Si—H = 1.616 A, Ni—Si = 2.177 A) agree well
with actual values observed in the structure of 5 and converge to
the bridging structure from either initial hydrido silylene or o-silyl
models (see Supporting Information).

In conclusion, a new three-coordinate nickel(l) silyl complex was
isolated and characterized. Its oxidation leads to a 1,2-hydrogen
migration from silicon to nickel and gives an unusual cationic
H-bridging species that features 3-center, 2e~ bonding.
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